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Abstract

Optical illusion art is an impactful form of art that takes
advantage of the structural processes that formulate hu-
man vision to cause viewers to question their own percep-
tion. Through classical computer vision techniques, we ex-
plore ways of computerizing the creation of artistic illusions
in the form of 3D perspective illustrations and wireframe
sculptures. We reverse the typical inputs and outputs of a
homography projection to calculate the original image on
a plane or planes non-orthogonal to a viewer, such that the
homography results in the desired perspective illusion. We
also extend projection to the non-planar case, minimizing
reprojection error to generate 3D point clouds that form dif-
ferent wireframe illustrations at specified viewer perspec-
tives.

1. Motivation

Humans have long been fascinated by optical illusions
[10, [6]], perhaps motivated by curiosity about the gap be-
tween perception and reality. One particular facet of vi-
sual perception, perspective, has been known since the time
of the Ancient Greeks [4) [6]], and experienced a surge in
popularity during the Renaissance, with significant study on
forced perspective and creating illusions of depth [6].

A public, easily accessible means of artistic expression,
sidewalk art emerged in the late 19th century, with hundreds
of sidewalk artists active in London by 1890. However, the
first known instance of forced perspective in sidewalk art
was not until 1980, when ex-NASA scientist Kurt Wenner
created the first large scale 3D street art [11]. Part of the
reason for this long delay is the difficulty for the artist in
creating 3D street art on such a scale.

The most common methods in use currently include
overlaying a grid of the correct shape over the target im-
age and approximating the shape in each cell, or projecting
an image of the art at an angle with the ground [3]. Both
of these methods are subject to error, and are difficult for a
novice artist to perform. As a result, there are relatively few
3D street artists in the world.
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Figure 2. Elphant-Girafes, by Matthieu Robert-Ortis.

However, by using computers and linear algebra [7], it is
simple to provide an artist with the exact image they need
to draw, making it possible for novice artists and even elec-
tronic printers to create these 3D illusions. This method can
be extended to objects with multiple surfaces at different
angles, allowing for the creation of new types of art.

This idea has been further developed by the artist
Matthieu Robert-Ortis [8], who has created 3D wireframe



sculptures which appear to be different images when viewed
from orthogonal angles (Figure [2). In our work, we extend
this idea to arbitrary viewpoints and demonstrate our results
on 3D-printed structures.

2. Methodology

Python code for our project can be found at:
https://github.com/dennisl88/homography _art.

2.1. Street Art

To facilitate the creation of 3D street art, we perform the
following steps:

First, we select the corners of the target area, where the
image will be placed (Figure [).
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Figure 4. Corner selection for the target area.

Next, we input the actual dimensions of the target area,
either as a length and width or corner by corner.

Then, we select the area of the source image which will
be drawn over the target area, which will have the same
shape (Figure [5).

Figure 5. Selecting a region of the source image.

We next compute the homography matrix H from the co-
ordinates in the target shape (z,y) to the coordinates in the
source image (2, y’), using the following equation:
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This equation can be solved using SVD by computing
P = USV'T and taking the eigenvector v corresponding to
the smallest eigenvalue.

Finally, we iterate over the coordinates of the target
shape, and for each coordinate (x,y), compute the corre-
sponding (z', 3’) and interpolate within the source image to
find the correct pixel. The resulting image (Figure[6)) can be
drawn by the artist or printed directly. The resulting image
can be also be previewed, or compared to the final results.

(Figure[7).

Figure 6. Preview of the applied homography.

Figure 7. Homography result physically printed and put in place
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Figure 3. Graphical example of homography

2.2. Wireframes

If we no longer restrict ourselves to the planar case, then
it is possible to create illusions which appear to be different
images from different viewpoints 3| 9]]. Figure [§] depicts
the setup.

Figure 8. Schematic for the wireframe problem. In this case, we
wish to find the point cloud such that the scene as viewed from the
left camera appears to be a smiley face, while the scene as viewed
from the right camera appears to be a cat.

To accomplish this, we utilize the camera matrices P, =
KlRl[Il — Cl] and P2 = K2R2[1| — 02], where K1 and
K5 are the camera intrinsics matrices, R; and Ry de-
scribe the camera orientations in the world frame, and c;
and co are the camera positions in the world frame. For
each pair of corresponding homogenous points (p1,p2) =
((x1,91), (x2,y2)) in the desired images, we want to have

p1 = PiN and py = P, N, where N = (X,Y, Z, W) de-
scribes the homogenous 3-D point which is projected to p;
in camera 1 and to ps in camera 2.

Using the projection equations

o = Pi[1,1]X 4+ Pi[1,2]Y + P1[1,3]Z+P1[1,4]W7
P[3,1]1X + P1[3,2]Y + P1[3,3]Z + P [3,4]W
Py[2,1]X + P1[2,2]Y + P1[2,3]Z + P12, 4W

NZ PB X + Pi[3,2]Y + P1[3,3)Z + Py[3, W’

2y — Po[1,1]1X + Po[1,2]Y + P[1,3]Z + P[1,4W
P[3,1]X + P[3,2]Y + P,[3,3|Z + P2[3,4]W’

o = Py[2,1]X 4 P5[2,2]Y + P»[2,3]Z + P[2,4W

[ ;

we can solve for N = (X, Y, Z, W) as the last right eigen-
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3. Results

By programming our approaches in Python, we have ver-
ified the correctness of our methodology by printing 2D and
3D artistic examples that successfully recreate the desired
illusions.

3.1. Homography

To verify the correctness of our street art generation tech-
nique, we have created multiple examples of projecting illu-
sions onto a known simple surface of an 8.5 x 11 inch sheet



of paper. We took input photos of the paper from portrait,
landscape, and slanted orientations relative to a flat table
surface, and successfully projected artistic graphics of our
own design onto each paper orientation (Figures [9} [I0} [TT).
In homage to both computer vision and traditional art sub-
jects, our examples depict the following: (1) a 3D shaded
sphere that is often rendered by artists to learn lighting tech-
niques, (2) a word rendered not in edges but in splotches
akin to the famous hidden dalmatian illusion, and (3) a rec-
ognizable human figure popping out of an illusory hole in
the original surface material.

Figure 9. Homography results of our custom-designed image of a
3D shaded sphere, projected at a portrait orientation.

Figure 10. Homography results of our custom-designed image of
a word defined by splotches, projected at a landscape orientation.

Figure 11. Homography results of our custom-designed image of
a hole rendered in the original surface, projected at a slanted ori-
entation.

We expect the results to hold true to larger surfaces, such
as sidewalks and human-sized surfaces. Interestingly, when
using human observation on our 8.5 x 11 inch examples
from short distances (less than 1 feet away), the illusory
sense of perspective were best observed only with one eye
open at a time. At such short distances, disparity between
the two observer eyes was large enough to require different
projection parameters for each eye. This effect disappeared

when observing the illusion through a camera lens rather
than through human eyesight. We expect this interfering
effect to become negligible at the larger viewer distances
typical in an outdoor street setting.

We also decided to extend our street art homography to
multi-planar surfaces. As our homography technique is ca-
pable of projecting over arbitrary rectangular surfaces at ar-
bitrary normal vector orientations, it is feasible for an artist
to render a consistent illusion over multiple planes by spec-
ifying the 4 corners of every planar segment of the image.
This has the implication that our technique can actually be
applied consistently over complex 3D mesh or voxel sur-
faces, so long as the mesh consists of rectangular faces with
known dimensions (Figure [I2).

Figure 12. Complex multi-planar surfaces such as 3D meshes
(left), voxels (middle), and lenticulars (right) are all candidates
for homography projection.

Figure 13. The original photo, and homography results, of our
hand-crafted lenticular with custom-designed snake and mongoose
images.



Figure 14. The interlaced projection image, and final hand-crafted
lenticular, of our custom-designed snake and mongoose images.

In demonstration of this capability, we create two ho-
mography projection examples requiring multi-planar pro-
jection: a lenticular surface, and a non-continuous geomet-
ric object.

Our lenticular surface is not a flat image viewed through
a ribbed lenticular lens, but an actual corrugated, accordion
shape composed of twenty 8.5 x 1 inch rectangles at equal
angles (Figure [I3). Additionally, the lenticular surface is
intended to be viewed not head-on, but on a flat horizontal
surface to give an illusion of either a 3D snake or mongoose
laying atop of the table.

At this relatively large a fold interval (1 inch), merely
interleaving the two images would not achieve the desired
illusion. Each co-normal plane is sufficiently offset along
the orthogonal or depth direction that an unrectified inter-
leaved image would not be perceived as continuous. This
is evident in how the snake and mongoose planar segments
still do not align in the final homography result, even when
each is grouped back together into the same original image
(Figure[T4). Homography projection is thus still required in
order to successfully generate this illusion.

Our second multi-planar example is of a geometric shape
viewed at such an angle that the illusion image projects
across a total of three different orthogonal normal direc-
tions, each normal surface being non-continuous. For sim-
plicity’s sake, the shape was constructed entirely out of 2
inch x 2 inch squares, more similar to a 3D voxel than a
mesh. The illusion image was chosen such that when the
shape was viewed while held in the palm of the hand, the
viewer’s hand would be seamlessly replaced by the illusion
hand.

Figure 15. Original photo and homography results of a hand illus-
tration projected over a geometric shape, held in the palm of the
hand.

Noticeably, due to the homographic projection across
three different normals, parts of the illusion that cross over
different normals (such as the thumb) become greatly dis-
torted as they cross the edge. Additionally, due to the or-
thogonal offset of the non-continuous planes sharing each
normal direction, the same points in the image (such as the
wrist) map to multiple points on the geometric shape when
projected. Despite these non-linearities, the illusion is suc-
cessfully achieved when constructed in real life.

Figure 16. Different views of the final geometric shape illusion.

3.2. Wireframes

For all of our wireframe experiments, we choose K =
diag(35, 35, 1) for our camera intrinsics matrix. In order to
facilitate visualization of a real-world 3D-print of our wire-
frames, we set the cameras’ azimuths to +/ — 90°, with an
elevation of 30° and a distance of 70 to the origin. We cre-
ate illusions for two pairs of images: a smiley face/cat, and
a demon/angel, as depicted in Figure[I8] The results can be



Figure 17. Top-to-bottom: Generated point cloud for the smiley face/cat wireframe illusion; 3D-printed result for the smiley face/cat wire-
frame illusion; Generated point cloud for the demon/angel wireframe illusion; 3D-printed result for the demon/angel wireframe illusion.

viewed in Figure[T7]

Figure 18. Left two columns: Target images for the smiley face/cat
illusion and the demon/angel illusion. Rightmost column: Gener-
ated .stl files for 3D-printing the wireframes.

4. Future Work

In terms of artistic projects, one possible idea would be
to approximate curved surfaces as the union of many planes.
Utilizing the mesh/multiplanar approach exhibited in 3| we
can apply our homography to each of these approximated
planes [2]. For example, a beach ball could depict a game
of chess when viewed from the proper angle.

Another artistically appealing approach would be to fur-
ther experiment with wireframe designs and camera loca-
tions: it may be possible to have a wireframe which could
be viewed as three or more different images, depending on
the viewing angle. Figure[T9]shows that the smiley face/cat
illusion already appears as a bird when viewed from the cor-
rect angle, providing evidence for the feasibility of this idea.
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Figure 19. The smiley face/cat wireframe illusion appears as a bird
when viwed from above.

But one disparate artistic technique that we did not pur-
sue was the creation of uniformly lit illusions over non-
uniformly lit and contoured surfaces (Figure[20). By assum-



ing time-invariant illumination conditions and Lambertian
reflectance over the projected surfaces, it would be possible
to make 3D perspective illusions over multiplanar and/or
multi-albedo surfaces that are consistent over illumination
as well as perspective when seen by the viewer.
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Figure 20. One artistic technique for future work is to generate
consistently-illuminated illusion images over non-consistent illu-
minated surfaces.

The process to compute the necessary illusion is as fol-
lows. The artist first takes a photo of the blank surfaces
under the expected illumination conditions, and provides 2
inputs: the desired perceived illusion image (i.e. the serpent
graphic), and the photo (i.e. the blank walls). The artist
would then have to specify the blank surfaces in the photo
by selecting their outlines or corners. By computing the
required image processing transformation that maps each
blank surface under the original lighting conditions all to a
uniform lighting condition, one can then apply this transfor-
mation to each segment of the illusion to compensate for the
varying lighting on each surface when seen by the viewer.

There are two different methods for implementing the
transformation for achieving uniform illumination in the
perceived image: contrast stretching, and histogram equal-
ization (Figure |2;1'[) Both methods, although intended for
achieving high contrast in an image, achieve the desired ef-
fect of mapping the histogram distribution of illumination
or intensity values in an image to a more uniform distribu-

tion [[].

Contrast Stretching Histogram Equalization

original

| B

M NN s
v DB RREE]

Figure 21. Although both contrast stretching and histogram equal-
ization achieve uniform illumination, only contrast stretching pre-
serves intensity histogram shape.

Contrast stretching is a linear process that takes the min-
imum and maximum intensity values in the image and maps
them out to the ends of a full illumination range [0, 1].
The intermediary values are then stretched or spread evenly
across this range. Histogram equalization, on the other
hand, is a nonlinear process that attempts to normalize the
probability distribution by flattening value ranges of high
frequency, modifying the shape of the final intensity his-
togram. Both these techniques can be tested to see which
technique provides superior results.

However, there are a few practical concerns to the im-
plementation of this artistic idea. First, the assumption of
time-invariant illumination conditions is rarely satisfied in
the real world, especially in a street art setting, unless the
artwork is to be displayed in a controlled setting environ-
ment such as a museum exhibition. Second, the application
technique of the illusion itself, such as the paint or the print-
ing technique used, is subject to its own unaccounted prop-
erties. While any glossy (and thus non-Lambertian) sheen
in the final applied paint or ink may be corrected through
an application of clear matte (Lambertian) finish, most ap-
plication techniques, such as non-opaque paints and inkjet
printing, are incapable of achieving lighter tones than the
original color of the surface: they are only capable of dying
the existing surface darker. This limitation would restrict
the lightest value in the final illusion image to the darkest
perceived value found across all surfaces.

Due to these limitations, it would be prudent to first test
this idea in a controlled setting with a simple multi-planar
shape, such as the lenticular shape used in Figures [I3] and
[T4 In this setting, we can control the location and proper-
ties of the light source and therefore the theoretical illumi-
nation intensity distribution for each of the planes. This
would allow us to determine what modifications, if any,
should be made to our approach to facilitate real-world illu-
sions.
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