
A Geometric Introduction to Lie Theory

Alvin Zhang, alvn.zng@gmail.com

November 2022

1 Meta

This is an intuitive, visual introduction to Lie theory. Readers are expected to
have familiarity with high-school calculus and trigonometry.

2 Introduction

What is the “natural” path for an animal or robot to take when moving from
one pose to another? This question has applications in robotics, computer
vision, and computer graphics. In this post, I use this problem as a case study
to introduce the basic concepts behind Lie theory. Rather than starting with
an abstract mathematical definition and then presenting applications, I instead
analyze a concrete example and use its underlying geometry to motivate and
develop the general concepts and assumptions behind Lie theory.

As a bonus, applying this geometric approach to studying Lie groups allows
us to derive a new method for computing the logarithmic map from SE(3)− >
se(3), which is both faster and numerically stable than existing methods in the
literature.

3 The Problem

The problem is as follows: Given the starting and ending “pose”s of a robot or
animal, can we estimate what path the animal took in moving between these
poses? That is, can we estimate the intermediate poses of that animal’s path?

Let’s start by clarifying the question, and outlining some assumptions.
First things first. What do I mean by an object’s “pose”?
Intuitively, the “pose” of an animal encapsulates both its location in space

and its local arrangement of parts: where the head is in relation to the feet,
which way the arm is pointing, if the paw is twisted or upside-down. But, this
description of “pose” is really complicated and difficult to study.

[Illustration of complicated pose]
In this post, I am going to assume that a robot’s “pose” in 3-D space can

be fully described by a position (which has three degrees of freedom) and an

1

orientation (which also has three degrees of freedom). This has the effect of
locking all of the joints of the animal in place, so that the local arrangement of
parts is fixed: like a plastic toy, the animal has become a “rigid body” which
can only be rotated or translated as one unit.

[Insert picture of duck illustrating 6 DOF].
If we think about how most robots or animals move, this is really not too

poor of an assumption: the parts which propel the robot or animal forward tend
to come back to roughly the same configuration in a cyclical pattern. And the
parts which aren’t involved in propulsion don’t really affect the path that the
animal or robot takes.

[Cat vs. amoeba]
So, then, what is a “natural” path between two 3-D poses?
Well, there are of course many paths which will get something from one pose

to another. One possibility, which minimizes the distance traveled, is to first
rotate to face the ending pose, travel to the destination, and then re-orient to
the desired ending pose.

[Illustration (Definitely not walle)]
This is definitely a viable strategy! It is certainly the “natural” path in many

contexts. However, the rotational and translational motions happen in separate
phases. Maybe we could get from the start to the end faster if we rotated and
translated simultaneously. What path would we get if we tried this?

[Illustration (spinning walle)]
This is very direct! However, we usually do not see animals, cars, planes, or

boats moving in this way - in most contexts, an animator is probably not going
to choose this kind of path.

[Illustration (cat, car, bird/plane)]
Why is this? There are two reasons.
Firstly, animals and robots tend to have a preferred local direction for linear

motion. The cat finds it more “natural” to walk forwards (towards the end of
its path) than backward (at the beginning) or sideways (in the middle). It is
not even possible for a car to move sideways, unless you know how to drift!

Secondly, even if it is possible for a robot or animal to move in all directions,
maintaining a [globally] constant linear velocity requires constantly monitoring
and changing one’s [local] linear velocity. This is a lot of work! (I encourage
you to try it out: try to walk 10 meters forward while rotating over 135 degrees.
It’s surprisingly difficult!) Instead, what if we instead start by choosing a path
which maintains constant [local] linear and angular velocities?

[Illustration (stepping, cat, car, boat, bird/plane)]
Maintaining constant linear and angular velocities results in paths that are

smooth arcs! These are the “natural” paths which I will be working with for
the rest of this post: those traced out by objects moving at constant local linear
and angular velocities. Of course, there are other criteria for “natural” paths,
such as those discussed previously, which may be more appropriate depending
on the situation. However, studying these paths with constant local velocities
leads us to some interesting questions: Given two poses, how can I compute
the local linear and angular velocities that I need to move between them? And,

2

what are the intermediate poses along the path? Do I need to simulate applying
the local angular and linear velocities over many small time-steps, or is there a
closed-form formula that I can apply to get the global pose?

The questions are not easy to answer; luckily, the powerful mathematical
tool known as Lie theory can provide answers. However, in its full glory, it
is perhaps [too] powerful: because it is so general and abstract (it works in
any number of dimensions!), its proper definition uses abstract mathematical
language which I find difficult to intuit. Instead, in this post, I will start by
analyzing 2-D rotations, which are simple to understand and illustrate. The
study of this specific case will then provide the framework for introducing the
basics of Lie theory. I then demonstrate the equivalence of the geometric and
Lie-theoretic approaches in more complex cases, including that of 3-D rigid body
motions, allowing us to answer the questions posed above.

4 2-D Rotation

The two-dimensional analogue of 3-D orientation is simply “heading”, the direc-
tion that an object in the plane is facing. It is a seemingly simple case with only
one degree of freedom, but analyzing this will provide us with the tools that we
need to analyze the more complex cases of combined rotation and translation
in both 2 and 3 dimensions.

4.1 Coordinate Systems

Before we can do anything with headings, we have to answer the most basic
question: how can we describe an object’s “heading” with numbers? Just as
we can describe an object’s 2-D position in terms of an x-coordinate and a
y-coordinate, can we uniquely specify an object’s 2-D orientation?

One important thing to note is that, even in the case of 2-D position, coor-
dinates are relative to a base frame. If I tell you that a object is at coordinates
(x, y) = (3, 4), that gives no information about where the object actually is until
I tell you where (0, 0) is, which direction the x-axis is pointing, and (in real life)
the units.

[Illustration of different coordinate systems]
Since headings have only one degree of freedom, we should only need to use

one number to describe an object’s 2-D orientation. This can be achieved as
follows: pick a reference heading to be the 0 heading; then, for any other heading
h, one can uniquely identify h by the angle between it and the 0 heading. Let’s
call this coordinate “axis” ∡ (analogously to x or y for 2-D position). Then, it
is convention to take the direction of the positive x-axis to be the 0 heading,
and to measure angles in radians, with +∡ “pointing” in the counter-clockwise
direction. I will use this convention in the rest of this post.

[Illustration showing ∡]

3

4.2 Group Property

This brings us to an interesting observation about headings: the difference be-
tween two headings is in fact another heading.

[Illustration]
This fact has deep consequences: it means that the set of headings and the 2-

D rotations that [transform] between headings [can be thought of equivalently].
In fact, in the rest of this post, I will use “heading”, 2-D orientation, and 2-D
rotation interchangeably: a heading [is] a 2-D rotation, and can act on another
heading to produce a third heading. I will use a(b) to denote applying a rotation
a to a heading b.

The more mathematically inclined may note that this is the first character-
istic of a mathematical “group”: the others being that: (2) there is an identity
rotation which does not change other headings, (3) for every heading, there is
an inverse heading which brings it back to the identity heading, and (4) for any
three headings, a(b(c)) = (a(b))(c).

[Illustration of group properties]

4.3 Representation

In the section about Coordinate Systems[link], I introduced a simple coordinate
system to an object’s heading. It is minimal in the sense that we have one
number [θ]∡ to describe a system with one degree of freedom, and elegant in
that sense that the group operations are simple:

1. a(b) := [a+ b]∡,

2. I := [0]∡, and

3. a−1 := [−a]∡.

However, this representation does not accurately capture the geometry of
the group, in the sense that there are infinitely many representations of the
same object: for any integer k, [0]∡ ≡ [k · 2π]∡.

[Illustration of equivalent points]
What if we instead take a geometric approach, one that captures the un-

derlying structure of the group of 2-D rotations? Since an object’s heading is
just the direction that it is facing, then there is a one-to-one mapping between
headings and points on the unit circle: in fact, the spaces of 2-D rotation is
mathematically isomorphic to the unit circle. Therefore, let us define:

[cos(θ), sin(θ)]⊙ :≡ [θ]∡

[Illustration]
This removes the redundancy of the ∡ representation and reflects the ge-

ometry of 2-D rotations. However, the implementation of the group operations
is not clean: it seems that one would have to convert from ⊙ back to the ∡
representation, perform the group operation there, and then re-covert from ∡
to ⊙.

4

However, there is another option, which actually makes combining “head-
ing”s very easy! Instead of going back to one number, why don’t we add two
more?

[cos(θ), sin(θ)]⊙ :≡
[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
M

This is clearly equivalent to the ⊙ representation: we just took the ⊙ vec-
tor and made it into the first column, while the second column has no free
parameters once the first column is determined.

In this M -representation, the group operations are actually just matrix op-
erations! We can verify that they are equivalent to the ∡ group operations:

1.

a(b) = [a]∡([b]∡)

:= ([a]∡)M ([b]∡)M

=

[
cos([a]∡) − sin([a]∡)
sin([a]∡) cos([a]∡)

]
M

[
cos([b]∡) − sin([b]∡)
sin([b]∡) cos([b]∡)

]
M

=

[
cos([a]∡) cos([a]∡)− sin([b]∡) sin([b]∡) − cos([a]∡) sin([b]∡)− cos([b]∡) sin([a]∡)
cos([a]∡) sin([b]∡) + cos([b]∡) sin([a]∡) cos([a]∡) cos([a]∡)− sin([b]∡) sin([b]∡)

]
M

=

[
cos([a+ b]∡) − sin([a+ b]∡)
sin([a+ b]∡) cos([a+ b]∡)

]
M

= [a+ b]∡

2.
I = (I2)M = [0]∡

3.

a−1 = [−a]∡ =

[
cos([−a]∡) − sin([−a]∡)
sin([−a]∡) cos([−a]∡)

]
M

and applying the group composition operation shows that

aa−1 = ([a]∡)M ([−a]∡)M = ([a− a]∡)M = ([0]∡)M = I,

as desired.

So, we now have 3 different ways to represent headings! However, depending
on the situation, it may be more convenient to use one over another. For
instance, the ⊙ representation is great for illustrations, the ∡ representation
is simple and linear, and the M representation supports the group operations
while respecting the underlying unit-circle geometry.

[Table: representation, linear, illustration, isomorphic to unit circle (respects
underlying geometry)]

5

4.4 Velocity

So, now that we have these tools, let’s return to our original problem: what is
the constant-velocity path between two headings?

Let’s first define what it means to move at a constant angular velocity. This
is pretty simple, especially in the ∡ representation.

If an object moves at a [constant] angular velocity [ω] d
dt∡

, then for any

starting time t0 and ending time t1, we have:

[ω] d
dt∡

:=
[θt=t1 − θt=t0]∡

t1 − t0

Therefore, if an object starts at [θt=t0]∡ and moves at a constant angular
velocity [ω] d

dt∡
, we can compute its path as follows:

[θt=t0+T]∡ = [θt=t0]∡ + T [ω] d
dt∡

But, what about the other representations (⊙ and M) for 2-D rotations?
After all, the ∡ representation has the downside that it doesn’t truly capture
the geometry of the space.

Note: At this point, you may be asking yourself: why are we putting so much
work into studying the ⊙- and M -representations? It seems a lot simpler to just
work with the θ representation by adding or subtracting 2π as needed. The rea-
son is precisely that the ∡ representation does not have the same underlying
geometry as the group of 2-D rotations. Just one dimension higher, in 3-D, we
will see that the equivalent ∡-like representation is even more difficult to work
with and requires even more special edge-case handling. Just as it is better to
use the right screwdriver for the screw, working with a representation that [does]
have the same geometry as the underlying space is more elegant and just makes
sense. Studying these representations also leads us to the fundamental assump-
tions underlying Lie theory and reveals specific symmetries in the underlying
geometric space which are applicable to higher-dimensional problems.

4.4.1 Velocity in the Isomorphic Representations

If we start at [θ]∡ and apply an angular velocity [ω] d
dt∡

for an infinitesimal time

dt, we find that

lim
dt→0

([[θ + [ω] d
dt∡
· dt]∡)M − ([θ]∡)M

dt
= ω

d

dθ

[
cos(θ) sin(θ)

]
⊙

= ω
[
− sin(θ) cos(θ)

]
Plotting this vector on the unit circle ⊙, we find that it is always tangent to

the unit circle at the point ([θ]∡)⊙.
[Illustration]
This makes a lot of sense! Since the unit circle is [locally] Euclidean, we

expect that any instantaneous motion will lie in the tangent space. And the

6

unit circle is smooth, so we expect the tangent space to vary smoothly with the
angle ([θ]∡))⊙.

In fact, all of the tangent spaces are isomorphic to each other (they have
the same structure): the tangent space at ([θ]∡)⊙ is just the tangent space
at I = ([0]∡)⊙, rotated by θ! We can show this formally by computing the
instantaneous velocity for M :

lim
dt→0

([[θ + [ω] d
dt∡
· dt]∡)M − ([θ]∡)M

dt
= ω

d

dθ

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
M

= ω

[
− sin(θ) − cos(θ)
cos(θ) − sin(θ)

]
= ω

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
M

[
0 −1
1 0

]
M

= ([θ]∡)M
(
[ω] d

dt∡

)
d
dtM

where we define: (
[ω] d

dt∡

)
d
dtM

:=

[
0 −ω
ω 0

]
d
dtM

and

[ω] d
dt∡
≡
[
0 −ω
ω 0

]
d
dtM

In words, this means that: If an object is moving at a constant velocity
[ω] d

dt∡
, then rotating the object by [θ]∡ also rotates its [global] velocity (in M -

space) by [θ]∡. Or, put another way, even though the object’s [global] velocity
in M -space is changing, its [local] velocity in M -space remains constant!

[Illustration]
These statements mathematically capture the intuition that the unit circle

⊙ (and by extension, the group of 2-D rotations) is [rotationally] symmetric.
The fact that [ω] d

dt θ
does not change equivariantly with the angle θ is in fact

a sign that the ∡ space does [not] share an underlying geometry with the unit
circle ⊙. There are, of course, other kinds of [continuous symmetries] - and we
will soon be leveraging the ideas developed here and in the next section in our
study of 3-dimensional motion.

4.4.2 Integrating Velocity in M-space

Despite the fact that the [local] velocity vector in M -space is constant, inte-
grating a velocity (applying a certain [ω] d

dt∡
over a period of time) appears to

require working with the [global] velocity - which is not constant. Is the best
approach to perform a numerical approximation by repeatedly applying:

([θ]∡)M ← ([θ]∡)M
(
[ω] d

dt∡

)
d
dtM

[Illustration]

7

It turns out that we can do better, by leveraging the group property of 2-D
rotations! Suppose that an object starts at Rt=0 = I, and moves at a constant
velocity [ω] d

dt∡
for a time of T . If I can compute the rotation Rt=T

2
, then I know

that Rt=T = Rt=T
2
(Rt=T

2
): I traveled a distance of Rt=T

2
during the first half,

and because a heading is itself a rotation, I can apply that same rotation again
to go the rest of the way!

[Illustration]
This suggests a strategy for computing Rt=T : if we break T into infinitesi-

mally small dt-sized chunks, we need only compute Rt=dt and then

Rt=T = (Rt=dt)
T/dt

As dt→ 0, we can use our result[link] from the previous section to calculate
[Rt=dt]M = ([[ω] d

dt∡
· dt]∡)M :

lim
dt→0

([[θ + [ω] d
dt∡
· dt]∡)M − ([θ]∡)M

dt
= ([θ]∡)M

(
[ω] d

dt∡

)
d
dtM

Or, letting θ = 0:

lim
dt→0

([[ω] d
dt∡
· dt]∡)M − IM

dt
=
(
[ω] d

dt∡

)
d
dtM

lim
dt→0

[
([[ω] d

dt∡
· dt]∡)M = IM +

(
[ω] d

dt∡

)
d
dtM
· dt
]

lim
dt→0

[
([[ω] d

dt∡
· dt]∡)M = IM + (dt)

[
0 −ω
ω 0

]
d
dtM

]

As dt→ 0, this approximation becomes exact:

[Rt=T]M = lim
dt→0

[(Rt=dt)
T/dt]M

= lim
dt→0

(
IM + (dt)

[
0 −ω
ω 0

]
d
dtM

)T/dt

= exp

(
T

[
0 −ω
ω 0

]
d
dtM

)
This is a remarkable formula: even though the instantaneous [global] velocity

of an object moving at a constant velocity in M -space is constantly changing,
we can compute its [global] position with only its [local] velocity!

There are several reasons for this, which we will discuss in more detail in
the next section: there are several key assumptions that we have made while
deriving this formula.

A quick sanity check verifies the formula: if an object starts at [θ]∡ =
[0]∡ and moves at a constant velocity [ω] d

dt∡
, then at time T it should be at

([[ω] d
dt∡
· T]∡)M .

8

Letting

ω̂ :=

[
0 −ω
ω 0

]
d
dtM

we have:

[Rt=T]M = eω̂T

=

∞∑
n=0

[
1

n!
(ω̂T)n

]
= I + (ωT)

[
0 −1
1 0

]
− 1

2!
(ωT)2

[
1 0
0 1

]
− 1

3!
(ωT)3

[
0 −1
1 0

]
+

1

4!
(ωT)4

[
1 0
0 1

]
+ · · ·

=

∞∑
n=0

(−1)n
(
(ωT)2n

(2n)!

)[
1 0
0 1

]

+

∞∑
n=0

(−1)n
(
(ωT)2n+1

(2n+ 1)!

)[
0 −1
1 0

]
= cos(ωT)

[
1 0
0 1

]
+ sin(ωT)

[
0 −1
1 0

]
= ([[ω] d

dt∡
· T]∡)M

as expected.
To summarize, starting at Rt=0 = I and moving at constant velocity [ω] d

dt∡
,

we can compute

[Rt=T]M = ([[ω] d
dt∡
· T]∡)M = exp

(
T

[
0 −ω
ω 0

]
d
dtM

)

If we instead start at some arbitrary [θ]∡, we can use the group property
of 2-D rotations to amend this formula: starting at [θ]∡, we can advance our
position by the same amount we would have travelled if we had started at the
identity.

[Rt=T]M = ([θ + [ω] d
dt∡
· T]∡)M = [Rt=0]M · exp

(
T

[
0 −ω
ω 0

]
d
dtM

)

We now return to the observation that, although the instantaneous veloc-
ity in M -space is constantly changing along the path, the final expression for
[Rt=T]M only uses the instantaneous velocity at the identity

[ω] d
dt∡
≡
[
0 −ω
ω 0

]
d
dtM

9

What properties about 2-D rotations did we use in coming up with this
formula? And does a similar formula exist for any set with such properties? We
answer these questions presently.

4.5 Lie Groups and Lie Algebras

In the previous two sections, we derived two interesting properties about the
group of 2-D rotations:

First:

If an object is moving at a constant velocity [ω] d
dt∡

, then rotating the

object by [θ]∡ also rotates its [global] velocity (in M -space) by [θ]∡.
Or, put another way, even though the object’s [global] velocity in M -
space is changing, its [local] velocity in M -space remains constant!

[Illustration]
And second, we derived the formula:

[Rt=T]M = exp

(
T

[
0 −ω
ω 0

])
which provides a mapping from an object’s [local] velocity to its [global] position.

Together, these two statements hint at something deeper: the concept of
[continuous symmetry]. As we move in M -space, the global velocity rotates in
just the right way so that the local velocity remains constant. Is the property
something special about 2-D rotations? Or are there other spaces with similar
structure, for which we will be able to derive similar formulae?

One property, which is necessary to even be able to speak about velocities,
is that 2-D rotations are [differentiable]: that is, the limit

ẋ = lim
dt→0

x(t+ dt)− x(t)

dt

is always well-defined.
Even embedded within this property is yet another one: that the space of

2-D rotations is a [manifold]. That is, it is [locally Euclidean]: this means that
the operation x(t+ dt)− x(t) is well-defined for sufficiently small dt.

The final property which enabled these derivations was the fact that 2-D
rotations are a [group]. We used this in deriving mapping from local velocity to
global position:

Rt=T = lim
dt→0

(Rt=dt)
T/dt

Specifically, in taking this limit, we used the fact that 2-D rotations are
[differentiable with respect to the group operation].

All together, we have following three properties:

1. Be a [group]

2. Be a [manifold]

10

3. Be [differentiable] with respect to the group operations

Any space which satisfies these three properties is termed a [Lie group],
named after Sophus Lie, who studied these groups in the 19th century. It turns
out that these three properties are all one needs about a space to derive that
it has [continuous symmetry]: the [local] structure of the manifold is the same
regardless of one’s global position; therefore, moving [locally] in any direction
has a symmetric effect regardless of global position; therefore, an object moving
at a constant [local] velocity has a [global] velocity that changes [equivariantly]
with (in the same way as) its [global] position.

[Illustration (sphere)]
Since the local structure of the manifold does not change with global posi-

tion, it also has a special name: it is known as the corresponding [Lie algebra] of
the Lie group. It is commonly referred to as the “tangent space at the identity”:
“Tangent space” implies that it can be used to represent infinitesimal positional
changes around a point (and hence it is the appropriate space to express veloc-
ities), while “at the identity” defines a canonical coordinate system: all of the
[local] tangent spaces are isomorphic - but, at the identity, the local velocity
and the global velocity share the same coordinate system and are equivalent.

[Illustration (sphere)]
Putting this back into the context of 2-D rotations:

• The Lie Group of 2-D rotations is known as SO(2), and consists of matrices
of the form [

cos(θ) − sin(θ)
sin(θ) cos(θ)

]
,

(or equivalently, matrices R where RTR = I2 and det(R) = +1). This is
indeed a manifold, a group (under matrix multiplication), and is differen-
tiable with respect to the group operation.

• Its Lie algebra so(2) consists of matrices of the form[
0 −ω
ω 0

]
,

(or equivalently, the set of 2x2 skew-symmetric matrices). We recognize
this as the space of [local] velocities in M -space:

(
[ω] d

dt∡

)
d
dtM

. As ex-

pected by the “tangent space at the identity” definition, it is equal to the
[global] velocity space if starting at the identity rotation IM . And, we
have previously derived that

rotating [an] object by [θ]∡ also rotates its [global] velocity (in
M -space) by [θ]∡

just as we would expect from the general properties of a Lie group.

The mapping from the Lie algebra to the Lie group (from local velocity to
position) is known as the [exponential map], while the inverse mapping from the

11

Lie group to the Lie algebra is known as the [logarithmic map]. The logarithmic
map is not necessarily unique: for example, for 2-D rotations, we can get from
[0]∡ to [π/2]∡ in one time-step by rotating at [π/2] d

dt∡
, but we could also move

at [−3π/2] d
dt∡

or [7π/2] d
dt∡

to achieve the same thing.

[Illustration]
Tying it back to the group of 2-D rotations:

• The exponential map from velocities to positions so(2)→ SO(2) is given
by:

eω̂ = cos(ω)

[
1 0
0 1

]
+ sin(ω)

[
0 −1
1 0

]
• The logarithmic map from positions to velocities SO(2) → so(2) is given
by:

ω = arctan2(sin(θ), cos(θ)) = arctan2(R21, R11)

At the beginning, I also promised that Lie theory would help us to generalize
to more complex, higher-dimensional cases. A famous result, by Élie Cartan,
shows that, for any [matrix Lie Group] (one where composition is matrix mul-
tiplication and inversion is matrix inversion), the exponential map from the Lie
Algebra to the Lie Group is given by the matrix exponential:

eAt =

∞∑
n=0

[
1

n!
(At)n

]
I will make use of this in the subsequent sections to show the equivalence

between the geometric and Lie-theoretic formulations for several problems.

5 2-D Pose

Now that we’ve established the theoretical foundations, let’s now apply these
tools to the more complex case of 2-D pose, which is the union of both 2-D
position and orientation. In this section and the following ones, I’ll be exploring
the two questions laid out at the beginning of this post: how can I compute
the poses along a path that maintains a constant (local) velocity? And, given
a starting pose a and an ending pose b, how can I compute the local velocities
required to get from a to b in a specified time T?

[Illustration]
The first thing is to show that 2-D poses are a Lie group. If this is true, then

we will be able to exploit same symmetry properties as in our analysis of 2-D
rotations! I will not prove this, but consider the following intuitive arguments:

• 2-D poses are a group.

– A pose can also be interpreted as a transformation between poses:
the position can be interpreted as a translation and the orientation

12

as a rotation. Applying rotations and translations to a object does
not deform it; hence it will still have a valid 2-D pose at the end of
the transformation.

• 2-D poses are a manifold (are locally Euclidean).

– Consider that 2-D rotations are locally Euclidean and that 2-D trans-
lations are Euclidean; it makes sense that their union would inherit
this property.

• The group operation (a combined rotation and translation) is differen-
tiable.

– We know from everyday experience that 2-D poses vary smoothly
and can be infinitesimally interpolated. This supports the idea that
the space of 2-D poses is differentiable.

[Illustration of group operation]
In particular, the Lie group properties simplify our analysis of the [velocity

→ pose] and [pose → velocity] mappings because we can always start at the
identity pose!

Suppose that an object starts at the identity pose I, and that traveling at
a certain local velocity g for a time T takes it to a pose G(v, T). Then, we can
we can compute the pose b achieved after starting a and moving at that same
velocity g for a time T simply as b = a(G(g, T)).

[Illustration]
Similarly, to compute the local velocity g needed to go between two poses a

and b in a certain time T , we can bring a to the identity pose I by composing
it with a−1. If we apply this also to b, then the local velocity g needed to get
between I and a−1(b) in time T is precisely the same (local) velocity needed to
go between a and b in time T !

[Illustration]
Since the space of 2-D poses has a real-world geometric interpretation, I’ll

first derive the [velocity → pose] and [pose → velocity] mappings with a geo-
metric approach. I’ll then delve into the Lie-theoretic formulation of this setting
and show that it yields equivalent results!

5.1 Velocity → Pose: The Geometric Approach

The velocity of a 2-D object has two components: an angular velocity ω and a
linear velocity v.

If we approximate the path of an object moving at constant linear and
angular velocity, we find something that looks vaguely circular:

[Illustration]
In fact, if we were to take this to its limit and make our steps infinitesimally

small, we would precisely get an arc of a circle! (A circle is a path of constant
curvature.)

13

Suppose the object moves for a time T . Can we characterize the arc of the
object’s path?

[Illustration]
Firstly, we know that the object has rotated through an angle of Tω. So we

know that the angle of the arc is also Tω:

∡AOB = Tω

[Illustration]
Secondly, we know that the total length of the arc must be Tv, since the

object was travelling at a constant linear velocity the whole time! So the radius
of the arc is (Tv)/(Tω) = v/ω:

OA = OB = v/ω

[Illustration]
This gives us all of the information that we need to compute the offset−−→

AB =
−−→
OB −

−→
OA.

[Illustration]
For a circular orbit, we know that the velocity is perpendicular to the radius.

Therefore, if

v =

[
vx
vy

]
we should rotate it by 90 degrees to the right to get

v⊥ =

[
vy
−vx

]
Since

−→
OA ⊥ v, we then have

v⊥ ∝
−→
OA =

1

ω

[
vy
−vx

]
Then,

−−→
OB is just

−→
OA rotated by ∡AOB:

−−→
OB = (∡AOB)(

−→
OA) = ([Tω]∡)M (

−→
OA) =

1

ω

[
cos(Tω) − sin(Tω)
sin(Tω) cos(Tω)

] [
vy
−vx

]
and

−−→
AB =

−−→
OB −

−→
OA

= (IM − ([Tω]∡)M)(
−→
OA)

=
1

ω

[
1− cos(Tω) − sin(Tω)
sin(Tω) 1− cos(Tω)

] [
vy
−vx

]
Therefore, if we start at (x, y) = (0, 0), pointing along the +x-axis (θ = 0),

then at time T we will have heading

θ = Tω

14

and position [
x
y

]
=

1

ω

[
1− cos(Tω) − sin(Tω)
sin(Tω) 1− cos(Tω)

] [
vy
−vx

]
5.2 Velocity → Pose: The Lie Group Approach

Concretely, the Lie Group SE(2) is a [matrix Lie group], consisting of matrices
of the form: [

R t
0 1

]
where R ∈ SO(2) is a 2-D rotation matrix, and t represents a 2-D translation.

[Show closure under inversion and multiplication]
What is the Lie Algebra? se(2) is comprised of matrices of the form:[

ω̂ v
0 0

]
where ω̂ is defined as in section [link] for 2-D rotations

ω̂ :=

[
0 −ω
ω 0

]
and v is the local linear velocity.

Applying Cartan’s formula for matrix Lie groups, we find the exponential
map to be:

exp

(
T

[
ω̂ v
0 0

])
=

∞∑
n=0

1

n!

[
T ω̂ Tv
0 0

]n
=

[
I 0
0 1

]
+

[
T ω̂ Tv
0 1

]
+

1

2!

[
(T ω̂)2 (T ω̂)Tv

0 0

]
+

1

3!

[
(T ω̂)3 (T ω̂)2Tv

0 0

]
+ · · ·

=

[
eTω̂ t
0 1

]
where

t := 0 + Tv +
1

2!
(T ω̂)Tv +

1

3!
(T ω̂)2Tv + · · ·

We can simplify t with a little bit of algebra:

(T ω̂)t = (T ω̂)Tv +
1

2!
(T ω̂)2Tv +

1

3!
(T ω̂)3Tv + · · ·

ω̂t = (T ω̂)v +
1

2!
(T ω̂)2v +

1

3!
(T ω̂)3v + · · ·

ω̂t+ v = v + (T ω̂)v +
1

2!
(T ω̂)2v +

1

3!
(T ω̂)3v + · · ·

=

(
I + T ω̂ +

1

2!
T ω̂2 +

1

3!
T ω̂3

)
v

= eTω̂v

t = ω̂−1(eTω̂ − I)v

15

Therefore we have:

exp

(
T

[
ω̂ v
0 0

])
=

[
eTω̂ ω̂−1(I − eTω̂)v
0 1

]
where eTω̂ was previously found to be

eTω̂ =

[
cos(Tω) − sin(Tω)
sin(Tω) cos(Tω)

]
Note that the expression for t is equivalent to the expression for

−−→
AB found

in the previous section! And the expression for R is equivalent to [Tω]∡. There-
fore, using the geometric and Lie-theoretic approaches has leads us to the same
answer for integrating velocities to positions, as one would expect.

5.3 Pose → Velocity: The Geometric Approach

Let’s now consider the inverse problem: we have a target pose (θ, t) and need
to compute the local velocity that would be needed to go from I to that target
pose in time T .

Since the linear velocity v does not affect the angle θ, we must have

ω = θ/T

From section [link], we know that the path is a circular arc with angle θ.
[Illustration]

Letting M be the midpoint of AB, we have
−−→
AM = t/2.

Since MO ⊥ AM , we know that it is in the direction of

[
−ty
tx

]
. And

trigonometry gives us that AM/MO = tan(θ/2). Putting these together gives:

−−→
MO =

1

tan(θ/2)

(
1

2

[
−ty
tx

])
So,

−→
AO =

−−→
AM +

−−→
MO

=
1

2

([
tx
ty

]
+

1

tan(θ/2)

[
−ty
tx

])
[Illustration]
As before, we can use the fact that the velocity is perpendicular to the

radius: this gives us the direction of v. And we know its magnitude: the total
path length is θ(AO), so the speed is θ(AO)/T .

Putting this together, we have

v =
θ

T
(
−→
AO)⊥ =

θ

2T

([
ty
−tx

]
+

1

tan(θ/2)

[
tx
ty

])

16

5.4 Pose → Velocity: The Lie Theory Approach

This is pretty easy! Recall that SE(2) was defined as the space of rotations[
R t
0 1

]
where R was the matrix representation of an angle θ.

We previously found that the mapping from velocity to pose was given by:

exp

(
T

[
ω̂ v
0 0

])
=

[
eTω̂ ω̂−1(I − eTω̂)v
0 1

]
Inverting this, we find that, if R = eθ, we must have ω = θ/T .
Going from t to v requires a bit more algebra:

t = ω̂−1(I − eTω̂)v

= (θ̂/T)−1(I − eT (θ̂/T))v

= T (θ̂)−1(I − eθ̂)v

v = (I − eθ̂)−1(θ̂)T−1t

=

[
1− cos(θ) − sin(θ)
sin(θ) 1− cos(θ)

]−1 [
0 −θ
θ 0

]
T−1t

=
1

(1 + cos(θ))2 + sin2(θ)

[
1− cos(θ) sin(θ)
− sin(θ) 1− cos(θ)

] [
0 −1
1 0

]
θ

T
t

=
θ

T

(
1

2− 2 cos(θ)

)[
sin(θ) cos(θ)− 1

1− cos(θ) sin(θ)

] [
tx
ty

]
=

θ

2T

(
1

1− 1 cos(θ)

)[
sin(θ)tx − (1− cos(θ))ty
(1− cos(θ))tx + sin(θ)ty

]
=

θ

2T

([
−ty
tx

]
+

sin(θ)

1− cos(θ)

[
tx
ty

])
This is equivalent to the expression found in the previous section! We have
now shown the equivalence of the geometric and Lie-theoretic approaches for
the space of 2-D poses.

6 3-D Rotations

Working towards 3-D poses, we know add one more [spatial] dimension to 3-D
rotations. However, in moving from 2-D to 3-D rotations, we have in fact added
[two] degrees of freedom!

[Illustration]
This is pretty weird. In fact, it requires re-thinking the way that we think

about rotations.

17

6.1 Problems with the ∡ Representation

In the section on 2-D rotations [link], I hinted that using the ∡ representation
would extend poorly to multiple dimensions. Let’s take a moment to see why.

Extending the ∡ representation to multiple dimensions, we can try to rep-
resent an object’s 3-D orientation in terms of three angles θx, θy, and θz.

1. The first problem is shared by the 2-D case, is that the representation is
redundant: for each dimension, θ ≡ θ+2πk for any integer k. Canonical?

2. The second problem is that the ordering matters: rotating around the
z-axis and then the x-axis is [not] the same as rotating around the x-axis
and then the z-axis.

[Illustration]

Intuitively, the axes should be symmetric. But, for the θx,y,z representa-
tion, we have to define an ordering where one comes first.

3. The third problem, which is connected to the second, is that of further
redundancy: rotating -90 degrees around x and then 90 degrees around y
is equal to rotating 90 degrees around y and then 90 degrees around z.

[Illustration]

In the case of the cyclical 2π redundancy, we could choose a canonical
range of −π to π. But, it would be very difficult to choose a “canonical”
representation for an orientation under this degree of redundancy, if such
a thing is even possible.

4. The fourth problem is the famous phenomenon of “gimbal lock”. Strictly
speaking, this does not apply to the representation that I have described
here, as the representation which results in gimbal lock is sightly different.
However, because this problem is so ubiquitous in robotics, aeronautics,
and gaming and animation, it’s worth a quick detour: it showcases the
practical implications of using a representation which does not respect
the underlying geometry of 3-D rotations.

Gimbal lock occurs when we try to implement a physical system with 3
degrees of freedom. Recall that addressing the second problem requires
defining a canonical order of rotations. Deciding to perform rotations in
the order x, then y, then z, we first add a joint which rotates in the x-
axis. Then, we add a joint which rotates in the [local] y-axis, and then
another joint which rotates in the [local] z-axis. This is known as the [Euler
angle] representation; the latter two axes being local rather than global
differentiates the Euler angle representation from the θx,y,z representation
discussed above.

[Illustration]

Unfortunately, although any 3-D rotation is achievable with this configu-
ration, it has a special case where we actually lose one degree of freedom.

18

If we rotate by -90 degrees around the y-axis, then the x-axis of the first
joint and the [local] z-axis of the second joint are exactly aligned! So, we
have lost the ability to rotate about the [global] z-axis.

[Illustration]

The practical implications of this can be fatal. A pilot would not be able
to steer in one direction. A robot starting at this configuration and com-
manded to rotate about the [global] z-axis could output infinite velocities:
because nothing the controller does is able to effect the desired rotation,
the output is arbitrary and could be strongly impacted by numerical in-
stabilities.

This illustrates the difficulties in using triple-axis representations for 3-D
orientation. Of course, it can be done, and Euler angles are intuitive and used
extensively, but doing so requires special care and attention. Furthermore, be-
cause these representations do not respect the underlying geometry, we cannot
use them to express local velocities or use any of our tools from Lie theory.

Is there another way to think about 3-D rotations, one which does respect
the underlying geometry? In order to do this, we must think more deeply about
the space of 3-D rotations itself.

6.2 What [are] 3-D Rotations?

There are a few ways to define 3-D rotations: a geometric interpretation is to
define 3-D rotations as [the group of symmetries of the sphere]. Any rotation of
a sphere does not change it; this is clearly not true for other transformations,
such as translation or any non-rigid shearing, squashing, or scaling.

However, this definition alone does not yield a representation for 3-D ro-
tations: the group of 3-D rotations is not isomorphic to the sphere in three
dimensions. This is quickly shown: pick any point p on the sphere. Then, any
rotation around the diameter passing through p does not change p. Therefore,
a point p on the sphere does not uniquely identify a rotation.

[Illustration]
But, this does lead us to one representation: a 3-D rotation can be repre-

sented by a 3-D axis of rotation α and an angle θ, where we constrain ||α|| = 1.
This is known as the [axis-angle] representation, and it is the proper 3-D ana-
logue to the 2-D ∡ representation. Note that the axis of rotation α is defined
by the characteristic that any point along the axis of rotation is left unchanged
by the rotation.

This representation, however, does suffer from a number of redundancies:

1. As in the ∡ representation, θ ≡ θ + 2π.

2. (α, θ) ≡ (−α,−θ).

3. (α1, 0) ≡ (α2, 0) for any α1, α2.

19

Therefore, despite its neat geometrical interpretation, the axis-angle repre-
sentation is not a Lie-theoretic representation which shares a geometry with the
space of 3-D rotations.

A different representation comes from analyzing the action of a rotation on
the three coordinate axes. This derivation follows [MLS].

One way to represent a linear operation is by its action on the standard basis
vectors e1 = [1, 0, 0], e2 = [0, 1, 0], and e3 = [0, 0, 1].

Suppose that, after a rotation, [1, 0, 0] has been mapped to x, [0, 1, 0] has
been mapped to y, and [0, 0, 1] has been mapped to z. That is, the rotation is
represented in matrix form as

R =
[
x y z

]
Because rotations preserve angles, we must still have that x, y, and z are

mutually orthogonal. And because rotations preserve lengths, we know that
||x|| = ||y|| = ||z|| = 1.

Put in other terms,

RTR =

xT

yT

zT

 [x y z
]

=

1 0 0
0 1 0
0 0 1

= I3

There is one additional requirement for R to be a rotation matrix: consider
the reflection over the xz-plane:

[
x y z

]
=

1 0 0
0 −1 0
0 0 1

This also satisfies RTR = I: the axes remain mutually orthogonal and lengths
are preserved. Therefore, in order to ensure that R is a rotation and not a
reflection, we need the additional constraint that det(R) = +1. (Recall that the
determinant is a [signed] volume and therefore contains information about the
relative orientation of the axes).

This is the [matrix] representation for rotations. By construction, it is con-
venient apply a rotation R to a point p: one simply needs to perform the matrix
multiplication Rp. Composition is also performed via matrix multiplication:
since Ra(Rbp) = (RaRb)p, Ra(Rb) = RaRb. And, the matrix representation
is the one used in Lie theory, as it is isomorphic to the underlying geometry.
Specifically, the group of 3-D rotations SO(3) is defined as:

SO(3) := {R : RTR = I3,det(R) = +1}

20

We will be working with these two representations (axis-angle and matrix)
in the next sections.

(Aside: there is another major representation for 3-D rotations, known as
the [unit quaternions]. These are isomorphic to the sphere in four dimensions,
and “double-cover” the space of 3-D rotations, in the sense that there are exactly
two quaternions associated with each 3-D rotation. Like the Euler angles, they
have also found extensive usage in computer graphics and robotics. However,
they are outside the scope of this post.)

6.3 The Axis-Angle Representation

The axis-angle representation is unfortunately not isomorphic to the geometry
of 3-D rotations, due to the fact that θ ≡ θ + 2π, as in the ∡ representation.

However, like the ∡ representation, the axis-angle representation for 3-D
orientations is well-suited to working with velocities. In this representation, an
angular velocity is identified by an axis of rotation α and a rotational velocity
ω; then the rotation after time T is that with axis of rotation α and angle Tω.
Inversion is similarly simple.

The major difficulty with this representation comes from the question: How
does one compose rotations? Even the proof that composing two axis-angle
rotations yields another valid axis-angle rotation is non-trivial (and is known as
Euler’s rotation theorem). Concretely, given two rotations (α1, θ1) and (α2, θ2),
it is unclear how to compute the axis of rotation α3 and rotation angle θ3 that
comes from composing (α1, θ1)(α2, θ2).

This operation is so tantalizingly simple in the matrix representation. Is
there any way to convert between the two?

It turns out that there is! We know that applying a rotation R to a point p is
achieved by Rp. If we can figure out how to apply an axis-angle rotation (α, θ)
to a point p (yielding p′), then we can hopefully use that to reverse-engineer the
R which maps from p→ p′.

First, recall that points along the axis of rotation α are unaffected by the
rotation. If we decompose p into a component parallel to α p|| and a component
perpendicular to α p⊥, then p|| will be unaffected by the rotation and we only
need to worry about the p⊥ component.

[Illustration]
If we let the rotation of p⊥ around α p′⊥, then we have that p′ = p|| + p′⊥.
But how do we rotate p⊥ around an arbitrary axis α? To tackle this, we

need another tool: the cross product ×.
Geometrically speaking, the cross product a×b is an operation which yields a

vector c which is perpendicular to both a and b with length ||c|| = ||a||||b|| sin(θ),
where θ is the angle from a to b. The orientation of c is given by the so-called
right-hand-rule: if you curl your fingers from a towards b and stick your thumb
up, then c will be in the direction that your thumb is pointing.

[Illustration]

21

Algebraically, speaking a× b is implemented as follows:

a× b =

a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1

 =

 0 −a3 a1
a3 0 −a2
−a1 a2 0

b1b2
b3

 = âb

where

â :=

 0 −a3 a1
a3 0 −a2
−a1 a2 0

It is left to the inquisitive reader to show the equivalence of the geometric

and algebraic interpretations.
Let’s now return to our original problem: how can we rotate p⊥ by θ around

α? The vector yielded by the cross product α × p⊥ has length ||p⊥|| (because
||α|| = 1 and α ⊥ p⊥ by construction) and is precisely p⊥ rotated by π/2 around
α.

[Illustration]
We now have two orthogonal vectors in the plane of rotation. Thinking back

to the case of 2-D rotations, we can think of p⊥ as being in the direction the
+x-axis, and α× p⊥ as being in the direction of the +y-axis.

[Illustration]
This lets us p′⊥ as a linear combination of p⊥ and α× p⊥!

p′⊥ = cos(θ)p⊥ + sin(θ)(α× p⊥)

p′ = p|| + cos(θ)p⊥ + sin(θ)(α× p⊥)

= (p · α)α+ cos(θ)(p− (p · α)α) + sin(θ)(α× (p− (p · α)α))
= p cos(θ) + (1− cos(θ))(p · α)α+ (α× p) sin(θ)

This is known as [Rodrigues’ rotation formula], named after the French mathe-
matician Olinde Rodrigues.

It still remains, however, to recover the matrix R which yields the same
rotation from p→ p′. Luckily, this is achieved with a few more algebraic tricks.

p′ = p cos(θ) + (1− cos(θ))(p · α)α+ (α× p) sin(θ)

= p cos(θ) + (1− cos(θ))(p− p⊥) + α̂p sin(θ)

= p cos(θ) + (1− cos(θ))(p+ α× (α× p)) + α̂p sin(θ)

= p cos(θ) + (1− cos(θ))p+ (1− cos(θ))(α̂α̂p) + α̂p sin(θ)

= (I + α̂ sin(θ) + (1− cos(θ))α̂α̂)p

Thus rotating a point p around an axis α by an angle θ is equivalent to rotating
it by the matrix

R = (I + α̂ sin(θ) + (1− cos(θ))α̂α̂)

22

Therefore, to compose two axis-angle rotations (α1, θ1) and (α2, θ2), one
need only compute the equivalent rotation matrices R1 and R2, multiply them
to get R3 = R1R2, ...and then convert this back into the axis-angle form (α3, θ3).

What is this inverse formula, the one that brings a rotation matrix R to an
axis-angle (α, θ)? Geometrically speaking, we know that the rotation R leaves
the axis of rotation α unchanged, that is, that Rα = α.

We can use some clever algebra to show that α̂ ∝ R−RT :

Rα = α

RTRα = RTα

α = RTα

Rα = RTα

(R−RT)α = 0

Since R−RT is a skew-symmetric matrix, then (R−RT)α = (â)α = a× α for
some vector a.

But, since (R−RT)α = 0,

||a× α|| = ||a||||α|| sin(∡(a, α)) = 0

Assuming that R − RT ̸= 0, we then have that sin(∡(a, α)) = 0, or that
∡(a, α) = 0, or that a is parallel to α! Therefore, α̂ ∝ R−RT . Or, equivalently,

α ∝ (R−RT)∨

where ∨ is defined to be the inverse of the ∧ operator:

(â)∨ := a

Then, to get the angle of rotation, we can simply pick any point p not on
the axis of rotation α. Then, the angle θ is equal to the angle between p⊥ and
Rp⊥, where p⊥ ⊥ α and may be obtained by p⊥ ← p − p|| = p − (p · α)α or
p⊥ ← p× α.

Thus, for the axis-angle representation for 3-D rotations, we have shown how
to:

• convert from velocities to rotations and vice-versa,

• apply rotations p′ = (α, θ)p via conversion to the equivalent matrix rep-
resentation R, and

• compose rotations (α3, θ3) = (α1, θ1)(α2, θ2) via conversion to the equiv-
alent matrix representations R1 and R2, composing R3 = R1R2 in the
matrix space, and then converting R3 back to an axis-angle.

23

6.4 The Matrix Representation

As previously mentioned, the matrix representation SO(3) is the one used in
Lie theory because it reflects the underlying geometry of 3-D rotations.

The primary question, therefore, is what does the Lie algebra so(3) look like
for this space?

It turns out that so(3) is the space of 3-dimensional skew-symmetric matri-
ces! This can be seen through a clever bit of algebraic trickery. Suppose that
the rotation R is a function of time t. Then, for any time t, we have:

R(t)TR(t) = I

Differentiating this with respect to time t yields:

Ṙ(t)T Ṙ(t) +R(t)TR(t) = 0

Or,

R(t)T Ṙ(t) = −
(
R(t)T Ṙ(t)

)T
This implies that R(t)T Ṙ(t) is skew-symmetric, or that

R(t)T Ṙ(t) = â

for some vector a. Recall that â was defined as:

â :=

 0 −a3 a1
a3 0 −a2
−a1 a2 0

If we now let R(t) = I, we then have that the instantaneous velocity vec-

tor Ṙ(t) is equal to a skew-symmetric matrix â. Therefore, the instantaneous
velocity vector at the identity (and hence the Lie algebra) has the form of a
skew-symmetric matrix!rendering

Let us now apply Cartan’s formula for the exponential map to find how to
integrate

One of the interesting characteristics about 3-D pose is that any transforma-
tion between two poses can themselves be represented by another pose. What
do I mean by this?

To get from one 3-D pose to another (let’s say ‘A‘ and ‘B‘), I can first ro-
tate ‘A‘ so that it is aligned with the rotation of ‘B‘. I can then translate this
rotationally aligned version of ‘A‘ to the position of ‘B‘ to complete the trans-
formation. So a transformation between 3-D poses also consists of a rotation
and translation, just the same as a 3-D pose itself! [Illustration]

This characteristic, that the transformation between 3-D poses is itself a
kind of 3-D pose,

The special Euclidean group SE(3) is the set of all rigid-body motions in
three dimensions. We are all intimately familiar with it: whenever we interact

24

with any rigid object, by picking up dishes or playing with a toy duck, we are
sub-consciously dealing with elements of SE(3). It is no surprise, then, that
SE(3) has been extensively studied in robotics, graphics, and physics.

We deal with SE(3) so often, and in such a casual and everyday way, that
we take our intuitions about SE(3) granted. For example, it turns out that
SE(3) is a mathematical group, which just means that it has the following
three properties:

1. Identity: There is an identity rigid-body motion. That is, it is possible to
not move a rubber duck.

2. Inversion: A rigid-body motion can be un-done. That is, if I move a
rubber duck without deforming it, I can move it back to its starting pose
without deforming it.

3. Composition: Any rigid-body motion, followed by another rigid-body mo-
tion, is itself a valid rigid-body motion. That is, if I move a rubber duck
from pose A to pose B without deforming it, and then move it from pose
B to pose C without deforming it, I can move it from pose A to pose C
without deforming it.

4. Associativity: If I have three rigid body motions A, B, and C, then (A⊙
B)⊙ C = A⊙ (B ⊙ C).

Figure 1. A rubber duck undergoing moving in SE(3).
These properties are so obvious to us that we never consciously think about

them in everyday life. However, the fact that they are all true allows us to apply
results from mathematical group theory to the study of rigid-body motions.

In addition to being a group, SE(3) is also a differentiable manifold. This
means that our intuitions about smooth surfaces and Euclidean space apply: a
manifold is defined as a space which is locally Euclidean; and the fact that it is
differentiable means that the Inversion and Composition operations are smooth.
For example, since the Inversion operation is smooth, if I move my rubber duck
from pose A to pose B, the movement to go from B back to A is similar to the
movement going from B′ to A for any B′ that is “close” to B. A more formal
treatment is given in Appendix A of [MLS].

These two properties of SE(3) (that is is a group, and that it is a differ-
entiable manifold), means that it is a Lie group. This means that it has an
associated Lie algebra se(3), which is simply the tangent space at the identity
element; the Lie algebra fully captures the local structure and symmetries of the
group. The Lie algebra is therefore the natural space for expressing velocities
and infinitesimal motions in a Lie group (Figure 2). A full treatment of Lie
group theory is far beyond the scope of this work [citation needed]. However, I
will give one motivating example to illustrate its usefulness.

Figure 2. The Lie Group S1 and its Lie Algebra.

25

6.5 The Duck Game

Suppose that I am playing a game: I have a motorized toy duck, and it needs
to “rescue” some bread from a burning building at precisely t = 3. At t = 0,
I put the duck on the ground and set moving at a constant linear and angular
velocity. At t = 8, the duck stops moving. Unfortunately, I was busy “rescuing”
a sandwich at t = 3 and I forgot to record the linear and angular velocities of
the duck! But I can measure the duck’s pose at t = 8. How can I determine if
the duck was close to the bread at t = 3?

Figure 3. A motorized duck “rescues” bread.
One way to solve this problem is to compare the the duck’s poses at t = 0

and t = 8: let these be Gt=0 ∈ SE(2) and Gt=8 ∈ SE(2). I can find the point
gt=8 ∈ se(2) which corresponds to Gt=8 in the tangent space of Gt=0, and do
linear interpolation between gt=0 and gt=8 to get gt=3. This can then be mapped
back into a pose Gt=3, which gives me the position of my duck at t = 3!

Figure 4. Solving the duck problem using the Lie algebra of SE(2).

7 Preliminaries

7.1 Representation of SE(3)

Elements of SE(3) can be represented as

G =

[
R t
0 1

]
,

where R is a rotation matrix with the properties: RTR = I, det(R) = +1.
This is convenient, because the group properties under this representation

are familiar: the identity element is I4, inversion is performed by taking the
matrix inverse, and composition is achieved through matrix multiplication.

The action of this rigid body motion is a rotation about an axis ω by an
angle θ (where ω passes through the origin), followed by a translation of t.

7.2 Representation of se(3)

Elements of se(3), the Lie algebra of SE(3), can be represented as

g =

[
θω̂ v
0 0

]
,

where ||ω||2 = 1 and ω̂ is defined as:

ω̂ :=

 0 −ω[2] ω[1]
ω[2] 0 −ω[0]
−ω[1] ω[0] 0

 .

ω and θ have semantic meanings: the corresponding element of G ∈ SE(3)
has axis of rotation ω with an angle of rotation θ.

26

8 The Exponential map: se(3)→ SE(3)

8.1 Definition

Under this representation for SE(3), we can compute the mapping from se(3)
to SE(3) using the matrix exponential:

exp

([
θω̂ v
0 0

])
= I4 +

[
θω̂ v
0 0

]
+

1

2!

([
θω̂ v
0 0

])2

+
1

3!

([
θω̂ v
0 0

])3

+ · · ·

=

[
I3 0
0 1

]
+

[
θω̂ v
0 0

]
+

1

2!

[
(θω̂)2 (θω̂)v
0 0

]
+

1

3!

[
(θω̂)3 (θω̂)2v
0 0

]
+ · · ·

The bottom row is trivial: the terms are 0 and 1.
The top-left component expands to exp(θω̂), which has a closed-form given

by Rodrigues’ formula:

R = I3 + ω̂ sin(θ) + ω̂2(1− cos(θ))

.
The tricky part is the top-right component:

v +
1

2!
(θω̂)v +

1

3!
(θω̂)2v) + · · ·

.

8.2 The tricky part

The problem is that we are missing a θω̂ term: multiplying by θω̂ yields:

(θω̂)v +
1

2!
(θω̂)v2 +

1

3!
(θω̂)3v) + · · · = (exp(θω̂)− I3)v

.
However, we can’t simply factor out θω̂ because ω̂ is not invertable. It has

rank 2, and ω is in its nullspace (thus it spans ω⊥).
But, we can do the next best thing. Let’s factor v into components parallel

to ω and perpendicular to ω:

v := v|| + v⊥

:= cω + θω̂v′.

Then we have:

v +
1

2!
(θω̂)v +

1

3!
(θω̂)2v) + · · · = (cω + θω̂v′) +

1

2!
(θω̂)(cω + θω̂v′) +

1

3!
(θω̂)2(cω + θω̂v′)) + · · ·

= cω + (θω̂)v′ +
1

2!
(θω̂)v′2 +

1

3!
(θω̂)3v′) + · · ·

= cω + (exp(θω̂)− I3)v
′

= cω + (R− I)v′

27

8.3 Finding v′

How can we efficiently compute v′?
First, note that θω̂v′ = θ(ω × v′) = v⊥. This implies that v′ ⊥ v⊥.
Secondly, note that we can let v′ ⊥ ω without loss of generality: If v′ has

a component in the direction of ω, it will be zeroed when computing ω × v′ in
Equation(X). Note also that this will not affect the (R − I)v′ = Rv′ − v′ term
in Equation(X): Rv′ is v′ rotated about the axis ω by θ. The component of v′

parallel to ω is not affected by this; hence that term is zeroed by subtracting v′.
Figure 5. Rv′ − v′.
Therefore, v′ ∝ v⊥ × ω. But we know that:

v⊥ = θω̂v′

:= θ(ω × (kv⊥ × ω))

= kθv⊥,

where the last equality can be verified using the fact that v⊥ ⊥ ω and following
the right-hand rule.

So we finally have:

v′ = θ−1(v⊥ × ω) = θ−1(v × ω)

.

8.4 Final result

Therefore, the final result of this section is:

exp

([
θω̂ v
0 0

])
=

[
R θ−1(R− I)(v × ω) + (vTω)ω
0 1

]
,

where R is computed according to Rodrigues’ formula:

R = I3 + ω̂ sin(θ) + ω̂2(1− cos(θ))

.
This is equivalent to the result in Equation (2.36) of [MLS]; however, it is

not the form provided in Appendix A of [MLS] or the widely-cited [Jose Luis
Blanco Clarco (2010)]. It is provided here to increase adoption, as it is both
numerically stable and faster than the methods provided in those works.

9 The Logarithmic map: SE(3)→ se(3)

This is simply the inverse of the operation defined in section(X).
We are now given

t := θ−1(R− I)(v × ω) + (vTω)ω

28

and tasked with finding v.
As before, let us decompose t into components parallel to and perpendicular

to ω:

t := t|| + t⊥.

Since ω is in the nullspace of R − I (as shown in Figure(X)), we have that
t|| = (vTω)ω, or that v|| = t||.

Now returning to t⊥, let t⊥ := (R − I)t′. Since (R − I)ω = 0, we may let
t′ ⊥ ω without loss of generality. Following Figure(X), we compute t′ as follows:

t′ =
1

tan(θ2)

t⊥
2
× ω − t⊥

2

.
Figure 7. Geometrical computation of t′.
Substituting into Equation(X), we have that v⊥ × ω = θt′. Since v⊥ ⊥ ω,

we then have v⊥ = θ(ω × t′), where we have used the fact that t′ and ω are
orthogonal, so ||ω × t′|| = ||t′||.

Therefore,

v = θ

(
ω ×

(
1

tan(θ2)

t⊥
2
× ω − t⊥

2

))
+ (tTω)ω

=
θ

2

(
1

tan(θ2)
t⊥ + t⊥ × ω

)
+ (tTω)ω.

This is again faster and more numerically stable than the methods given in
[MLS] and [Blanco (2010)].

29

